metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2-phenylethylammonium) tetrachloridocobaltate(II)

In-Hwan Oh,^a Dahye Kim,^b Young-Duk Huh,^b Younbong Park,^c J. M. Sungil Park^a and Seong-Hun Park^d*

^aNeutron Science Division, Korea Atomic Energy Research Institute, Daejeon, 305-353, Republic of Korea, ^bDepartment of Chemistry, Dankook University, Gyeonggi-Do, 448-701, Republic of Korea, ^cDepartment of Chemistry, Chungnam National University, Daejeon, 305-764, Republic of Korea, and ^dDepartment of Chemistry, Faculty of Liberal Art & Teacher Education, University of Seoul, Seoul, 130-743, Republic of Korea Correspondence e-mail: parksh@uos.ac.kr

Received 22 March 2011; accepted 29 March 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.011 Å; *R* factor = 0.055; w*R* factor = 0.161; data-to-parameter ratio = 17.0.

Crystals of the title compound, $(C_6H_5CH_2CH_2NH_3)_2[CoCl_4]$, were grown by the solvent-evaporation method. This inorganic-organic hybrid compound exhibits a layered structure in which isolated $CoCl_4$ inorganic layers alternate with bilayers of phenylethylammonium cations. Although the inorganic anion is zero-dimensional, the layered structure is stabilized *via* N-H···Cl hydrogen bonds. The CoCl₄ tetrahedra connect to the cations through N-H···Cl hydrogen bonds, building a two-dimensional network extending parallel to (010).

Related literature

For inorganic–organic hybrids containing tetrahedral anions, see: Abdi *et al.* (2005); Huh *et al.* (2006); Zouari & Ben Salah, (2004). For low-dimensional magnetism in inorganic–organic perovskite systems, see: de Jongh (1986); Park & Lee (2005, 2006); Depmeier (2009); Mitzi (1999). For classification of hydrogen bonds depending on bond lengths, see: Steiner (1998, 2002).

Experimental

Crystal data $(C_8H_{12}N)_2[CoCl_4]$ $M_r = 445.10$ Monoclinic, $P2_1/c$ a = 7.4623 (13) Å b = 24.664 (3) Å

c = 11.1997 (16) Å $\beta = 91.769 (13)^{\circ}$ $V = 2060.3 (5) \text{ Å}^{3}$ Z = 4Mo $K\alpha$ radiation $\mu = 1.35 \text{ mm}^{-1}$ T = 296 K

Data collection

Bruker P4 diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.237, T_{max} = 0.265$ 4692 measured reflections 3595 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.161$ S = 1.033595 reflections 211 parameters 1566 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$ 3 standard reflections every 97 reflections intensity decay: none

 $0.50 \times 0.40 \times 0.35 \text{ mm}$

 $\begin{array}{l} \text{2 restraints} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.43 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1

Selected bond lengths (Å).

Co1-Cl4	2.229 (2)	Co1-Cl1	2.272 (2)
Co1-Cl2	2.251 (2)	Co1-Cl3	2.276 (2)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2 - H2C \cdots Cl1^i$	0.89	2.62	3.445 (6)	156
$N2-H2A\cdots Cl4^{ii}$	0.89	2.51	3.321 (6)	152
$N1 - H1C \cdot \cdot \cdot Cl3^{iii}$	0.89	2.42	3.291 (8)	167
$N1 - H1B \cdot \cdot \cdot Cl1$	0.89	2.55	3.382 (7)	156

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x, y, z - 1; (iii) -x + 1, -y + 1, -z + 1.

Data collection: *XSCANS* (Bruker, 1996); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009) and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXL97*.

IHO thanks Professor G. Heger for discussion of the results and for suggestions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2347).

References

- Abdi, M., Zouari, F., Chniba-Boudjada, N., Bordet, P. & Salah, A. B. (2005). Acta Cryst. E61, m240–m241.
- Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (1996). *XSCANS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Depmeier, W. (2009). Z. Kristallogr. 224, 287-294.
- Huh, Y. D., Kim, J. H., Kweon, S. S., Kuk, W. K., Hwang, C. S., Hyun, J. W., Kim, Y. J. & Park, Y. (2006). Curr. Appl. Phys. 6, 219–223.
- Jongh, L. J. de (1986). In Magnetic Properties of Layered Transition Metal Compounds. Dordrecht: Kluwer.
- Mitzi, D. B. (1999). Prog. Inorg. Chem. 48, 1-121.
- Park, S.-H. & Lee, C. E. (2005). J. Phys. Chem. B, 109, 1118-1124.

Park, S.-H. & Lee, C. E. (2006). Bull. Kor. Chem. Soc. 27, 1587–1591.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Steiner, T. (1998). Acta Cryst. B54, 456–463.
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.
Zouari, F. & Ben Salah, A. (2004). Solid State Sci. 6, 847–851.

supplementary materials

Acta Cryst. (2011). E67, m522-m523 [doi:10.1107/S1600536811011603]

Bis(2-phenylethylammonium) tetrachloridocobaltate(II)

I.-H. Oh, D. Kim, Y.-D. Huh, Y. Park, J. M. S. Park and S.-H. Park

Comment

The title compound, $(C_6H_5CH_2CH_2NH_3)_2CoCl_4$, belongs to the layered inorganic-organic hybrid systems of general formula A₂MX₄ (where A = organic cation, *M* = divalent metal, *X* = halides). These systems are of special interest because of typical low-dimensional magnetic systems (de Jongh, 1986; Mitzi, 1999). To investigate the role of interlayer spacing on the magnetic properties, a variety of hybrid systems using long-chain alkylamine have been developed. However, their crystallographic studies are limited because their insolubility make it difficult to obtain a good single-crystal. As a part of our research interest in the low-dimensional magnetism (Park & Lee 2005, 2006), we synthesized a series of the layered inorganic-organic perovskite materials using phenethylamine and present the crystal structure of $(C_6H_5CH_2CH_2NH_3)_2CoCl_4$. Among the phenethylammonium-based compounds, several examples with tetrahedral anions are known to literature, for example, $(C_6H_5C_2H_4NH_3)_2ZnBr_4$ (Huh *et al.*, 2006), $(C_6H_5(CH_2)_2NH_3)_2Cd_{0.75}Hg_{0.25}Br_4$ (Zouari & Ben Salah, 2004), $(C_8H_{12}N)TlBr_4$ (Abdi *et al.*, 2005). Except for $(C_8H_{12}N)TlBr_4$, in which the heavy atom has trivalent, the other bivalent compounds have tetrahedral MBr₄ anions with non-magnetic ions in common. The present paper is the first report of the tetrahedral MCl₄ with magnetic ion using phenethylamine.

Fig. 1 shows the molecular structure of $(C_6H_5CH_2CH_2NH_3)_2CoCl_4$. The asymmetric unit of the title compound consists of two phenethylammonium cations and one isolated CoCl₄ anion; the latter is arranged as an distorted tetrahedron, whose bond lengths ranging from 2.229 (2) to 2.276 (2) Å (Table 1). Interestingly, the crystal structure exhibits a layered inorganic-organic structure although the dimension of inorganic backbone is 0-dimensional or isolated CoCl₄ tetrahedra, as shown in Fig. 2. The CoCl₄ tetrahedral groups are isolated and are connected to the organic cations by N—H···Cl hydrogen bonds *via* the NH₃-groups. Tab. 2 and Fig. 2 display also the N—H···Cl hydrogen bonds of $(C_6H_5CH_2CH_2NH_3)_2CoCl_4$. Between the CoCl₄ layers, —CNH₃⁺ ions are located in the space between CoCl₄ tetrahedra, which is formed by Cl atoms. N—H···Cl hydrogen bonds to build a two-dimensional hydrogen-bonded NH₃—CoCl₄ network. Due to the hydrogen bonds, the Co—Cl bond lengths increase, resulting in slightly deformed CoCl₄ tetrahedra. The obtained bond lengths suggest that the strength of the N—H···Cl hydrogen bonds in the structure can be classified as weak (Steiner, 1998; Steiner, 2002).

Experimental

 $CoCl_2$ ·6H₂O (99%, Aldrich), phenethylamine (C₆H₅CH₂CH₂NH₂, 99.5%, Aldrich), HCl (37 wt % in water, Aldrich), and methanol (anhydrous, 99.8%, Aldrich) are used as received. For the preparation of single-crystal (C₆H₅CH₂CH₂NH₃)₂CoCl₄, 10 ml of a 0.25*M* CoCl₂·6H₂O methanol solution were mixed with 10 ml of a 0.5*M* phenethylamine methanol solution. 1 mL of an HCl solution was added to the mixed solution. Blue crystals of (C₆H₅CH₂CH₂NH₃)₂CoCl₄ were obtained after 7 days at room temperature. Elemental analysis of C, H, and N was carried

out by CHNS analysis (CE Instrument EA 1112 series). The expected formula of $C_{16}H_{24}N_2Cl_4Co$ was confirmed. The relative weights calculated for $C_{16}H_{24}N_2Cl_4Co$ were: C, 43.17%, H, 5.43%, N, 6.29%; found: C, 43.14%, H, 5.44%, N, 6.23%.

Refinement

H atoms bonded to C were positioned geometrically and refined based on a riding model (C—H = 0.95Å in aromatic ring and 0.99 Å for CH₂) with $U_{iso}(H) = 1.2$ of their parent atoms. H atoms at N atoms were located in a difference map and refined with distance constrained of N—H = 0.89 Å, and with $U_{iso}(H) = 1.2U_{eq}(N)$. C7—C8 and C15—C16 bond lengths were refined with restrained distances 1.545 (2) Å.

Figures

Fig. 1. Molecular structure of $(C_6H_5CH_2CH_2NH_3)_2CoCl_4$, showing the atomic labeling and 50% probability displacement elllisoids for non-H atoms.

Fig. 2. Crystal structure of $(C_6H_5CH_2CH_2NH_3)_2CoCl_4$ viewed along the *a* axis, showing the N—H···Cl hydrogen bonds as dashed lines.

Bis(2-phenylethylammonium) tetrachloridocobaltate(II)

Crystal data

 $(C_8H_{12}N)_2[CoCl_4]$ $M_r = 445.10$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.4623 (13) Å b = 24.664 (3) Å c = 11.1997 (16) Å $\beta = 91.769$ (13)° V = 2060.3 (5) Å³ Z = 4

F(000) = 916 $D_x = 1.435 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \u00e5 A Cell parameters from 38 reflections \u00e8 = 3.3-12.3^\u00e9 \u00c4 = 1.35 mm^{-1} T = 296 K Rectangle, blue 0.5 \u00e8 0.4 \u00e8 0.35 mm

Data collection

Bruker P4 diffractometer	1566 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.041$
graphite	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
$2\theta/\omega$ scans	$h = -1 \rightarrow 8$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$k = -1 \rightarrow 29$

$T_{\min} = 0.237, \ T_{\max} = 0.265$	$l = -13 \rightarrow 13$
4692 measured reflections	3 standard reflections every 97 reflections
3595 independent reflections	intensity decay: none

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.055$	H-atom parameters constrained
$wR(F^2) = 0.161$	$w = 1/[\sigma^2(F_o^2) + (0.0502P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
3595 reflections	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
211 parameters	$\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$
2 restraints	Extinction correction: <i>SHELXL</i> , Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0018 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Co1	0.25951 (13)	0.52176 (4)	0.77334 (8)	0.0581 (3)
C11	0.0134 (3)	0.55281 (9)	0.67021 (18)	0.0911 (7)
C12	0.2717 (3)	0.55493 (8)	0.96063 (16)	0.0901 (7)
C13	0.5051 (3)	0.54580 (9)	0.67008 (18)	0.0895 (7)
Cl4	0.2382 (4)	0.43175 (8)	0.78339 (19)	0.1218 (11)
C1	0.3714 (10)	0.6982 (4)	0.1447 (7)	0.075 (2)
H1	0.3974	0.6694	0.0946	0.090*
C2	0.4215 (10)	0.7492 (4)	0.1131 (6)	0.081 (3)
H31	0.4849	0.7546	0.0439	0.097*
C3	0.3783 (11)	0.7927 (3)	0.1835 (8)	0.083 (2)
H3	0.4077	0.8278	0.1608	0.099*
C4	0.2910 (10)	0.7836 (4)	0.2879 (7)	0.081 (2)
H4	0.2642	0.8125	0.3376	0.097*
C5	0.2433 (9)	0.7316 (4)	0.3188 (6)	0.068 (2)
Н5	0.1823	0.7258	0.3888	0.082*
C6	0.2847 (10)	0.6882 (3)	0.2473 (6)	0.066 (2)
C7	0.2286 (12)	0.6304 (4)	0.2746 (7)	0.099 (3)
H7A	0.0987	0.6285	0.2720	0.118*
H7B	0.2717	0.6067	0.2126	0.118*
C8	0.2921 (13)	0.6110 (3)	0.3860 (7)	0.106 (3)
H8A	0.2501	0.6346	0.4484	0.127*
H8B	0.4221	0.6121	0.3886	0.127*
С9	0.2308 (9)	0.2503 (3)	0.1306 (5)	0.0560 (17)
Н9	0.2728	0.2687	0.1983	0.067*
C10	0.2513 (9)	0.1950 (3)	0.1235 (6)	0.0627 (19)

supplementary materials

H10	0.3066	0.1762	0.1866	0.075*
C11	0.1908 (10)	0.1675 (3)	0.0243 (7)	0.069 (2)
H11	0.2044	0.1301	0.0198	0.083*
C12	0.1107 (10)	0.1951 (3)	-0.0676 (6)	0.067 (2)
H12	0.0702	0.1763	-0.1353	0.080*
C13	0.0887 (9)	0.2501 (3)	-0.0622 (5)	0.0608 (18)
H13	0.0334	0.2684	-0.1260	0.073*
C14	0.1485 (9)	0.2788 (3)	0.0380 (6)	0.0562 (17)
C15	0.1166 (11)	0.3392 (3)	0.0449 (7)	0.086 (2)
H15A	0.0752	0.3519	-0.0331	0.103*
H15B	0.0215	0.3458	0.1002	0.103*
C16	0.2724 (11)	0.3707 (3)	0.0826 (7)	0.085 (2)
H16A	0.3704	0.3625	0.0307	0.102*
H16B	0.3088	0.3602	0.1632	0.102*
N1	0.2316 (11)	0.5540 (3)	0.4099 (6)	0.115 (3)
H1A	0.1329	0.5469	0.3661	0.172*
H1B	0.2083	0.5505	0.4870	0.172*
H1C	0.3177	0.5309	0.3909	0.172*
N2	0.2383 (8)	0.4300 (2)	0.0799 (5)	0.0758 (18)
H2A	0.2107	0.4403	0.0053	0.114*
H2B	0.3362	0.4475	0.1059	0.114*
H2C	0.1476	0.4378	0.1267	0.114*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	0.0607 (6)	0.0511 (5)	0.0628 (6)	0.0000 (5)	0.0052 (4)	-0.0041 (5)
Cl1	0.0673 (13)	0.1124 (17)	0.0931 (14)	0.0206 (13)	-0.0035 (11)	0.0131 (12)
Cl2	0.135 (2)	0.0655 (12)	0.0702 (12)	0.0041 (13)	0.0055 (13)	-0.0163 (10)
C13	0.0707 (13)	0.1058 (16)	0.0931 (14)	-0.0135 (13)	0.0222 (11)	-0.0084 (12)
Cl4	0.225 (3)	0.0497 (11)	0.0914 (15)	-0.0165 (16)	0.0130 (18)	-0.0131 (10)
C1	0.060 (5)	0.098 (6)	0.066 (5)	0.007 (5)	0.001 (4)	-0.013 (4)
C2	0.048 (5)	0.140 (8)	0.055 (4)	0.009 (6)	0.004 (4)	0.020 (5)
C3	0.068 (6)	0.082 (6)	0.097 (6)	-0.007 (5)	-0.017 (5)	0.030 (5)
C4	0.068 (6)	0.099 (7)	0.076 (5)	0.006 (5)	-0.005 (4)	-0.017 (5)
C5	0.059 (5)	0.104 (6)	0.043 (4)	0.009 (5)	0.007 (3)	0.006 (4)
C6	0.057 (5)	0.077 (5)	0.065 (5)	0.006 (4)	0.000 (4)	0.009 (4)
C7	0.101 (7)	0.099 (7)	0.095 (6)	-0.012 (6)	-0.019 (6)	0.013 (5)
C8	0.130 (9)	0.090 (7)	0.097 (6)	-0.034 (6)	-0.008 (6)	0.013 (5)
С9	0.056 (4)	0.063 (4)	0.049 (4)	-0.012 (4)	0.003 (3)	0.000 (3)
C10	0.062 (5)	0.060 (5)	0.065 (4)	-0.007 (4)	-0.007 (4)	0.019 (4)
C11	0.071 (5)	0.052 (4)	0.085 (5)	-0.007 (4)	0.002 (4)	-0.002 (4)
C12	0.066 (5)	0.083 (6)	0.050 (4)	-0.009 (4)	0.001 (4)	-0.016 (4)
C13	0.061 (5)	0.072 (5)	0.049 (4)	0.000 (4)	-0.009 (3)	0.014 (4)
C14	0.053 (4)	0.051 (4)	0.064 (4)	0.000 (4)	0.001 (4)	0.008 (3)
C15	0.077 (6)	0.066 (5)	0.115 (6)	-0.001 (5)	-0.010 (5)	0.007 (5)
C16	0.089 (6)	0.054 (5)	0.112 (6)	0.003 (5)	-0.011 (5)	-0.003 (4)
N1	0.177 (8)	0.066 (4)	0.103 (5)	-0.025 (5)	0.033 (5)	-0.003 (4)

sup-5

supplementary materials

N2	0.099 (5)	0.050 (4)	0.079 (4)	0.002 (3)	0.005 (4)	0.003 (3)
Geometric para	meters (Å, °)					
Co1—Cl4		2.229 (2)	C15	—C16		1.451 (9)
Co1—Cl2		2.251 (2)	C16	—N2		1.485 (8)
Co1—Cl1		2.272 (2)	C1-	-H1		0.931
Co1—Cl3		2.276 (2)	C2-	-H31		0.931
C1—C6		1.358 (9)	C3-	-H3		0.931
C1—C2		1.363 (10)	C4-	H4		0.929
C2—C3		1.376 (10)	C5-	-H5		0.929
C3—C4		1.374 (10)	C7-	–H7A		0.970
C4—C5		1.377 (10)	C7-	–H7B		0.970
С5—С6		1.379 (10)	C8-	-H8A		0.968
С6—С7		1.519 (10)	C8-	-H8B		0.969
С7—С8		1.405 (9)	С9-	—Н9		0.930
C8—N1		1.502 (9)	C10	—H10		0.930
C9—C10		1.376 (8)	C11	—H11		0.929
C9—C14		1.380 (8)	C12	—H12		0.929
C10-C11		1.367 (9)	C13	—Н13		0.930
C11—C12		1.358 (9)	C15	—Н15А		0.970
C12—C13		1.368 (9)	C15	—Н15В		0.970
C13—C14		1.389 (8)	C16	—H16A		0.970
C14—C15		1.510 (9)	C16	—H16B		0.970
Cl4—Co1—Cl2		108.41 (8)	C16			114.6 (6)
Cl4—Co1—Cl1		107.67 (11)	C15	—C16—N2		112.8 (7)
Cl2—Co1—Cl1		111.10 (9)	Н5-	C5C4		119.6
Cl4—Co1—Cl3		110.19 (10)	H2A	A—N2—H2C		109.5
Cl2—Co1—Cl3		111.65 (9)	H2C	C—N2—H2B		109.4
Cl1—Co1—Cl3		107.75 (9)	H2A	A—N2—H2B		109.4
C6—C1—C2		122.0 (7)	C16	—N2—H2A		109.4
C1—C2—C3		120.0 (7)	C16	—N2—H2A		109.4
C4—C3—C2		119.1 (8)	C16	—N2—H2B		109.5
C3—C4—C5		119.9 (8)	H1A	A—N1—C8		109.3
C4—C5—C6		120.9 (7)	H1E	3—N1—C8		109.4
C1—C6—C5		118.1 (7)	H1C	C—N1—C8		109.4
C1—C6—C7		118.9 (7)	H1A	A—N1—H1B		109.5
C5—C6—C7		123.0 (7)	H1E	3—N1—H1C		109.5
C8—C7—C6		114.3 (7)	H1A	A—N1—H1C		109.6
C7—C8—N1		112.5 (7)	C3-	C4H4		119.9
C10—C9—C14		120.6 (6)	C2-	—С3—Н3		120.5
С11—С10—С9		120.3 (6)	C2-	C1H1		119.0
C12-C11-C10		119.6 (7)	H1-	C1C6		118.8
C11—C12—C13		121.0 (6)	C6-	—С7—Н7В		108.5
C12—C13—C14		120.3 (6)	C6-	—С7—Н7А		108.4
C9—C14—C13		118.2 (6)	C7-	C8H8B		108.9
C9—C14—C15		122.0 (6)	C7-	C8H8A		109.0
C13—C14—C15		119.7 (6)				
C6—C1—C2—C	23	-2.5 (12)	C14			0.2 (11)

supplementary materials

C1—C2—C3—C4	2.6 (12)	C9-C10-C11-C12	0.2 (11)
C2—C3—C4—C5	-2.0 (11)	C10-C11-C12-C13	-0.4 (11)
C3—C4—C5—C6	1.1 (11)	C11-C12-C13-C14	0.1 (11)
C2-C1-C6-C5	1.7 (11)	C10—C9—C14—C13	-0.5 (10)
C2—C1—C6—C7	178.3 (7)	C10—C9—C14—C15	177.3 (6)
C4—C5—C6—C1	-0.9 (11)	C12-C13-C14-C9	0.4 (10)
C4—C5—C6—C7	-177.4 (7)	C12-C13-C14-C15	-177.5 (7)
C1—C6—C7—C8	125.0 (9)	C9-C14-C15-C16	49.4 (10)
C5—C6—C7—C8	-58.6 (11)	C13-C14-C15-C16	-132.8 (8)
C6—C7—C8—N1	179.3 (7)	C14—C15—C16—N2	176.0 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
N2—H2C···Cl1 ⁱ	0.89	2.62	3.445 (6)	156.
N2—H2A…Cl4 ⁱⁱ	0.89	2.51	3.321 (6)	152.
N1—H1C····Cl3 ⁱⁱⁱ	0.89	2.42	3.291 (8)	167.
N1—H1B…Cl1	0.89	2.55	3.382 (7)	156.

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) *x*, *y*, *z*-1; (iii) -*x*+1, -*y*+1, -*z*+1.

Fig. 1

